
Recreation
Given that

log(1 + x) = x−
1

2
x2 +

1

3
x3 − . . .

why is it not the case that

log 2 = 1− 1/2 + 1/3− 1/4 + 1/5− 1/6 + 1/7− 1/8 + 1/9− . . .

= (1 + 1/3 + 1/5 + 1/7 + 1/9 + . . .)− (1/2 + 1/4 + 1/6 + 1/8 + . . .)

= (1 + 1/3 + 1/5 + 1/7 + 1/9 + . . .) + (1/2 + 1/4 + 1/6 + 1/8 + . . .)

−2(1/2 + 1/4 + 1/6 + 1/8 + . . .)

= (1 + 1/2 + 1/3 + 1/4 + . . .)− (1 + 1/2 + 1/3 + 1/4 + . . .)

= 0?

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 1

CS61B Lecture #7: Object-Based Programming

Basic Idea.

• Function-based programs are organized primarily around the func-
tions (methods, etc.) that do things. Data structures (objects) are
considered separate.

• Object-based programs are organized around the types of objects
that are used to represent data; methods are grouped by type of
object.

• Simple banking-system example:

account

deposit

account

account

withdraw

account

Function-based

Account

deposit

withdraw balance: 1420

Exported
methods

Exported
field

Object-based

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 2

Philosophy

• Idea (from 1970s and before): An abstract data type is

– a set of possible values (a domain), plus

– a set of operations on those values (or their containers).

• In IntList, for example, the domain was a set of pairs: (head,tail),
where head is an int and tail is a pointer to an IntList.

• The IntList operations consisted only of assigning to and accessing
the two fields (head and tail).

• In general, we prefer a purely procedural interface, where the func-
tions (methods) do everything—no outside access to the internal
representation (i.e., instance variables).

• That way, implementor of a class and its methods has complete con-
trol over behavior of instances.

• In Java, the preferred way to write the “operations of a type” is as
instance methods.

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 3

You Saw It All (Maybe) in CS61A: The Account Class

class Account:

balance = 0

def init (self, balance0):

self.balance = balance0

def deposit(self, amount):

self.balance += amount

return self.balance

def withdraw(self, amount):

if self.balance < amount:

raise ValueError \

("Insufficient funds")

else:

self.balance -= amount

return self.balance

myAccount = Account(1000)

print(myAccount.balance)

myAccount.deposit(100)

myAccount.withdraw(500)

public class Account {

public int balance;

public Account(int balance0) {

this.balance = balance0;

}

public int deposit(int amount) {

balance += amount; return balance;

}

public int withdraw(int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account(1000);

print(myAccount.balance)

myAccount.deposit(100);

myAccount.withdraw(500);

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 4

You Also Saw It All in CS61AS

(define-class (account balance0)

(instance-vars (balance 0))

(initialize

(set! balance balance0))

(method (deposit amount)

(set! balance (+ balance amount))

balance)

(method (withdraw amount)

(if (< balance amount)

(error "Insufficient funds")

(begin

(set! balance (- balance amount))

balance))))

(define my-account

(instantiate account 1000))

(ask my-account ’balance)

(ask my-account ’deposit 100)

(ask my-account ’withdraw 500)

public class Account {

public int balance;

public Account(int balance0) {

balance = balance0;

}

public int deposit(int amount) {

balance += amount; return balance;

}

public int withdraw(int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account(1000);

myAccount.balance

myAccount.deposit(100);

myAccount.withdraw(500);

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 5

The Pieces

• Class declaration defines a new type of object, i.e., new type of
structured container.

• Instance variables such as balance are the simple containers within
these objects (fields or components).

• Instance methods, such as deposit and withdraw are like ordinary
(static) methods that take an invisible extra parameter (called this).

• The new operator creates (instantiates) new objects, and initializes
them using constructors.

• Constructors such as the method-like declaration of Account are
special methods that are used only to initialize new instances. They
take their arguments from the new expression.

• Method selection picks methods to call. For example,

myAccount.deposit(100)

tells us to call the method named deposit that is defined for the
object pointed to by myAccount.

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 6

Getter Methods

• Slight problem with Java version of Account: anyone can assign to
the balance field

• This reduces the control that the implementor of Account has over
possible values of the balance.

• Solution: allow public access only through methods:

public class Account {
private int balance;

...

public int balance() { return balance; }
...

}

• Now Account. balance = 1000000 is an error outside Account.

• (I use the convention of putting ‘_’ at the start of private instance
variables to distinguish them from local variables and non-private
variables. Could actually use balance for both the method and the
variable, but please don’t.)

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 7

Class Variables and Methods

• Suppose we want to keep track of the bank’s total funds.

• This number is not associated with any particular Account, but is
common to all—it is class-wide. In Java, “class-wide” ≡ static.

public class Account {
...

private static int funds = 0;

public int deposit(int amount) {
balance += amount;

funds += amount; // or this. funds or Account. funds

return balance;

}
public static int funds() {
return funds; // or Account. funds

}
... // Also change withdraw.

}

• From outside, can refer to either Account.funds() or to
myAccount.funds() (same thing).

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 8

Instance Methods

• Instance method such as

int deposit(int amount) {
balance += amount;

funds += amount;

return balance;

}

behaves sort of like a static method with hidden argument:

static int deposit(final Account this, int amount) {
this. balance += amount;

funds += amount;

return this. balance;

}

• NOTE: Just explanatory: Not real Java (not allowed to declare
‘this’). (final is real Java; means “can’t change once initialized.”)

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 9

Calling Instance Method

/** (Fictional) equivalent of deposit instance method. */

static int deposit(final Account this, int amount) {
this. balance += amount;

funds += amount;

return this. balance;

}

• Likewise, the instance-method call myAccount.deposit(100) is like
a call on this fictional static method:

Account.deposit(myAccount, 100);

• Inside a real instance method, as a convenient abbreviation, one can
leave off the leading ‘this.’ on field access or method call if not
ambiguous. (Unlike Python)

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 10

‘Instance’ and ‘Static’ Don’t Mix

• Since real static methods don’t have the invisible this parameter,
makes no sense to refer directly to instance variables in them:

public static int badBalance(Account A) {
int x = A. balance; // This is OK

// (A tells us whose balance)

return balance; // WRONG! NONSENSE!

}

• Reference to balance here equivalent to this. balance,

• But this is meaningless (whose balance?)

• However, it makes perfect sense to access a static (class-wide) field
or method in an instance method or constructor, as happened with
funds in the deposit method.

• There’s only one of each static field, so don’t need to have a ‘this’
to get it. Can just name the class (or use no qualification inside the
class, as we’be been doing).

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 11

Constructors

• To completely control objects of some class, you must be able to set
their initial contents.

• A constructor is a kind of special instance method that is called by
the new operator right after it creates a new object, as if

L = new IntList(1,null) =⇒































tmp = pointer to 0
tmp.IntList(1, null);

L = tmp;

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 12

Multiple Constructors and Default Constructors

• All classes have constructors. In the absence of any explicit con-
structor, get default constructor, as if you had written:

public class Foo {
public Foo() { }

}

• Multiple overloaded constructors possible, and they can use each
other (although the syntax is odd):

public class IntList {
public IntList(int head, IntList tail) {

this.head = head; this.tail = tail;

}

public IntList(int head) {
this(head, null); // Calls first constructor.

}
...

}

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 13

Constructors and Instance Variables

• Instance variables initializations are moved inside constructors that
don’t start with this(...).

class Foo {
int x = 5;

Foo(int y) {
DoStuff(y);

}

Foo() {
this(42);

}
}

⇐⇒

class Foo {
int x;

Foo(int y) {
x = 5;

DoStuff(y);

}

Foo() {
this(42); // Assigns to x

}
}

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 14

Summary: Java vs. Python

Java Python

class Foo {
int x = ...;

Foo(...)

{ ... }
int f(...)

{...}
static int y = 21;

static void g(...)

{...}
}

class Foo: ...

x = ...

def __init__(self, ...):

...

def f(self, ...):

...

y = 21 # Referred to as Foo.y

@staticmethod

def g(...):

...

aFoo.f(...)

aFoo.x

new Foo(...)

this

aFoo.f(...)

aFoo.x

Foo(...)

self # (typically)

Last modified: Thu Sep 12 22:11:30 2019 CS61B: Lecture #7 15

	CS61B Lecture #7: Object-Based Programming
	Philosophy
	You Saw It All (Maybe) in CS61A: The Account Class
	You Also Saw It All in CS61AS
	The Pieces
	Getter Methods
	Class Variables and Methods
	Instance Methods
	Calling Instance Method
	`Instance' and `Static' Don't Mix
	Constructors
	Multiple Constructors and Default Constructors
	Constructors and Instance Variables
	Summary: Java vs. Python

