
CS61B Lectures #27

Today:

• Selection sorts, heap sort

• Merge sorts

• Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 1



Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

• Really bad idea on a simple list or vector.

• But we’ve already seen it in action: use heap.

• Gives O(N lgN) algorithm (N remove-first operations).

• Since we remove items from end of heap, we can use that area to
accumulate result:

19 0 -1 7 23 2 42original:

42 23 19 7 0 2 -1heapified:

23 7 19 -1 0 2 42

19 7 2 -1 0 23 42

7 0 2 -1 19 23 42

2 0 -1 7 19 23 42

0 -1 2 7 19 23 42

-1 0 2 7 19 23 42

-1 0 2 7 19 23 42

Heap part

Sorted part

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 2



Sorting By Selection: Initial Heapifying

• When covering heaps before, we created them by insertion in an
initially empty heap.

• When given an array of unheaped data to start with, there is a
faster procedure (assume heap indexed from 0):

void heapify(int[] arr) {
int N = arr.length;

for (int k = N / 2; k >= 0; k -= 1) {
for (int p = k, c = 0; 2*p + 1 < N; p = c) {

c = 2k+1 or 2k+2, whichever is < N
and indexes larger value in arr;

swap elements c and k of arr;
}

}
}

• Looks like the procedure for re-inserting an element after the top
element of the heap is removed, repeated N/2 times.

• But instead of being Θ(N lgN), it’s just Θ(N).

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 3



Cost of Creating Heap

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

1 node × 3 steps down

2 nodes × 2 steps down

4 nodes × 1 step down

• In general, worst-case cost for a heap with h + 1 levels is

20 · h + 21 · (h− 1) + . . . + 2h−1 · 1

= (20 + 21 + . . . + 2h−1) + (20 + 21 + . . . + 2h−2) + . . . + (20)

= (2h − 1) + (2h−1 − 1) + . . . + (21 − 1)

= 2h+1 − 1− h

∈ Θ(2h) = Θ(N)

• Alas, since the rest of heapsort still takes Θ(N lgN), this does not
improve its asymptotic cost.

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 4



Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge re-
sults.

• Already seen analysis: Θ(N lgN).

• Good for external sorting:

– First break data into small enough chunks to fit in memory and
sort.

– Then repeatedly merge into bigger and bigger sequences.

• Can mergeK sequences of arbitrary size on secondary storage using
Θ(K) storage:

Data[] V = new Data[K];

For all i, set V[i] to the first data item of sequence i;

while there is data left to sort:

Find k so that V[k] is smallest;

Output V[k], and read new value into V[k] (if present).

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 5



Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

0 elements processed

1 •0: (9)
01:
02:
03:

1 element processed

00:
1 •1: (9, 15)
02:
03:

2 elements processed

1 •0: (5)
1 •1: (9, 15)
02:
03:

3 elements processed

00:
01:
1 •2: (3, 5, 9, 15)
03:

4 elements processed

00:
1 •1: (0, 6)
1 •2: (3, 5, 9, 15)
03:

6 elements processed

1 •0: (8)
1 •1: (2, 20)
02:
1 •3: (-1, 0, 3, 5, 6, 9, 10, 15)

11 elements processed

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 6



Quicksort: Speed through Probability

Idea:

• Partition data into pieces: everything > a pivot value at the high
end of the sequence to be sorted, and everything ≤ on the low end.

• Repeat recursively on the high and low pieces.

• For speed, stop when pieces are “small enough” and do insertion sort
on the whole thing.

• Reason: insertion sort has low constant factors. By design, no item
will move out of its will move out of its piece [why?], so when pieces
are small, #inversions is, too.

• Have to choose pivot well. E.g.: median of first, last and middle
items of sequence.

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 7



Example of Quicksort

• In this example, we continue until pieces are size ≤ 4.

• Pivots for next step are starred. Arrange to move pivot to dividing
line each time.

• Last step is insertion sort.

16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 -1*

-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*

-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18

-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22

• Now everything is “close to” right, so just do insertion sort:

-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 8



Performance of Quicksort

• Probabalistic time:

– If choice of pivots good, divide data in two each time: Θ(N lgN)
with a good constant factor relative to merge or heap sort.

– If choice of pivots bad, most items on one side each time: Θ(N 2).

– Ω(N lgN) in best case, so insertion sort better for nearly or-
dered input sets.

• Interesting point: randomly shuffling the data before sorting makes
Ω(N 2) time very unlikely!

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 9



Quick Selection

The Selection Problem: for given k, find kth smallest element in data.

• Obvious method: sort, select element #k, time Θ(N lgN).

• If k ≤ some constant, can easily do in Θ(N) time:

– Go through array, keep smallest k items.

• Get probably Θ(N) time for all k by adapting quicksort:

– Partition around some pivot, p, as in quicksort, arrange that pivot
ends up at dividing line.

– Suppose that in the result, pivot is at index m, all elements ≤
pivot have indicies ≤ m.

– If m = k, you’re done: p is answer.

– If m > k, recursively select kth from left half of sequence.

– If m < k, recursively select (k − m − 1)th from right half of
sequence.

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 10



Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:
51 60 21 -4 37 4 49 10 40* 59 0 13 2 39 11 46 31
0

Looking for #10 to left of pivot 40:

13 31 21 -4 37 4* 11 10 39 2 0 40 59 51 49 46 60
0

Looking for #6 to right of pivot 4:

-4 0 2 4 37 13 11 10 39 21 31* 40 59 51 49 46 60
4

Looking for #1 to right of pivot 31:

-4 0 2 4 21 13 11 10 31 39 37 40 59 51 49 46 60
9

Just two elements; just sort and return #1:

-4 0 2 4 21 13 11 10 31 37 39 40 59 51 49 46 60
9

Result: 39

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 11



Selection Performance

• For this algorithm, if m roughly in middle each time, cost is

C(N) =















1, if N = 1,
N + C(N/2), otherwise.

= N +N/2 + . . . + 1

= 2N − 1 ∈ Θ(N)

• But in worst case, get Θ(N 2), as for quicksort.

• By another, non-obvious algorithm, can get Θ(N) worst-case time
for all k (take CS170).

Last modified: Tue Oct 23 23:02:59 2018 CS61B: Lectures #27 12


	CS61B Lectures #27
	Sorting by Selection: Heapsort
	Sorting By Selection: Initial Heapifying
	Cost of Creating Heap
	Merge Sorting
	Illustration of Internal Merge Sort
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance

