
CS 61B Discussion 6 Fall 2019
1 Basic Algorithmic Analysis
For each of the following function pairs f and g, list out the Θ,Ω,O relationships between f and
g, if any such relationship exists. For example, f (x) ∈ O(g(x)).

For all the problems below, you should be able to eye the asymptotic relations without thinking
about the limits which rigorously define them.

1. f (x) = x2, g(x) = x2 + x

f (x) ∈Θ(g(x)): When comparing polynomials the only thing that matters is the degree.

2. f (x) = 50000x3, g(x) = x5

f (x) ∈ O(g(x)): Same as above, and 5 > 3.

3. f (x) = log(x), g(x) = 5x

f (x) ∈ O(g(x)): Polynomials always grow faster than logarithms.

4. f (x) = ex, g(x) = x5

f (x) ∈Ω(g(x)): Exponential growth is always faster than polynomial growth.

5. f (x) = log(5x), g(x) = x

f (x) ∈ Θ(g(x)): It is a useful fact to remember that logb(a) and logc(a) differ by a constant
multiple for any pair (b,c). In particular, log(5x) = α log5(5

x) = αx for some α (remind
yourself of the change-of-base formula if you’re curious what α is)! You could also say that
log(5x) = x log5 using the power rule for logarithms.

CS 61B, Fall 2019, Discussion 6 1

2 Practice with Runtime
For each of the following functions, find the Big-Theta expression for the runtime of the function
in terms of the input variable n.

You may find the following relations helpful:

1+2+3+4+ · · ·+N = Θ(N2)

1+2+4+ · · ·+N = Θ(N)

1. For this problem, you may assume that the static method constant runs in Θ(1) time.

The outer nested loop runs n times, and the inner nested loop asymptotically runs n times (the
actual number of times varies, but linearly with n), that means the first double-for loop runs in
Θ(n2) time (since the activity per inner loop - a print statement - runs in time independent of
n). You can see this visualized using bars in the figure below. Notice that the area of the work
represented by the bars is in the shape of a triangle, which has an area of 1

2n∗n =⇒ Θ(n2).
The second loop runs in Θ(n) time, so overall we have Θ(n2 + n), but this is the same as
Θ(n2) (as shown in question 1.1), which is the answer.

public static void bars(int n) {
for (int i = 0; i < n; i += 1) {

for (int j = 0; j < i; j += 1) {
System.out.println(i + j);

}
}

for (int k = 0; k < n; k += 1) {
constant(k);

}
}

CS 61B, Fall 2019, Discussion 6 2

2. This one is trickier! Note that in the final iteration of the outer loop, the inner loop will run
n times. The iteration before, the inner loop will run n

2 times, and before that n
4 , and so on.

Abstracting, you can see that the number of times the inner loop will run is n+ n
2 +

n
4 + To

figure out how many times the outer loop runs, we need to know how many times (starting
with 1) you can double before reaching n: log2(n). Therefore that sum is ∑

log(n)
i=0

n
2i , which

you might see is bounded by 2n. Thus the total number of times the (constant-time) print
statement is in O(2n), and the overall runtime is Θ(n).

Once again, you can also arrive at this answer by drawing bars. Notice that the length of the
bars is doubling each time, until we get to the bar of length n. Well, we know that the bar
that came before it was of length n

2 , and the one before that was half of that–length n
4 . How

many bars can we move next to the n
2 bar so that it is as long as the n bar? Moving the n

4 bar
next to it puts the combined length at 3n

4 . Pulling the bar before that in next to them puts it
at 3n

4 + n
8 = 7n

8 . In fact, we will need ALL of the preceding bars to get a total length that is
(essentially) equal to n. So overall, we have (almost) 2n worth of bars. 2n =⇒ Θ(n).

public static void barsRearranged(int n) {
for (int i = 1; i <= n; i *= 2) {

for (int j = 0; j < i; j += 1) {
System.out.println("moove");

}
}

}

CS 61B, Fall 2019, Discussion 6 3

3 A Bit on Bits
Complete the following two functions.
/** Returns whether the ith bit of num is a 1 or not. i = 0 represents

* the least significant bit, i = 1 represents the bit to the left

* of that, and so on.

* For example, if num = 2, then i = 0 for it is not on but i = 1 is

* on since 2 in binary is 10. */
public static boolean isBitIOn(int num, int i) {

int mask = 1 << i;
return (mask & num) != 0;

}

/** Returns the input number but with its ith bit changed to a 1. Again,

* i = 0 represents the least significant bit, i = 1 represents the bit

* to the left of that, and so on.

* For example, if num = 1, which in binary is 01, then turning

* its i = 1 bit on would result in the binary number 11, which is 3. */
public static int turnBitIOn(int num, int i) {

int mask = 1 << i;
return num | mask;

}

CS 61B, Fall 2019, Discussion 6 4

4 Extra: A Bit with some Bits
Complete the following method such given a list of integers, it returns an integer such that the ith

bit of the return value is 1 if and only if more than half of the integers in the list have 1 in the ith

bit. Keep in mind that Java ints are 32 bits long!

For example, if bitList was [1,3], then in binary this would be [(01)2,(11)2] (with 30 more
zeros in front of each number), and the result would be (01)2 =⇒ 1, since the rightmost digit was
1 for more than half the numbers, but the second-from-the-right digit was not 1 for more than half
the numbers.

Note: the solution to this question isn’t very complicated, but it’s not short! Try breaking it down
into components, and ask your neighbors for help!

I’m sure there are multiple solutions to this problem. In general, the easiest thing to do is to keep
track of some variable (result here). At each i-stage, generate a number (mask) that represents
a number with all 0s except for a 1 at the correct ith spot. You then AND through all the numbers
in your list and see if the result is equal to the number j. If so, you increment some counter. If,
after going through your list, your counter is big enough, you flip the bit in result at the ith spot.
Using bit-OR is the easiest way to increment the right place in result.
public static int bitVote(int[] bitList) {

int result = 0;
for (int i = 0; i < 32; i++) {

int mask = 1 << i;
int count = 0;
for (int k : bitList) {

if ((k & mask) != 0) {
count++;

}
}
if (count > bitList.length/2) {

result = result | mask;
}

}
return result;

}

CS 61B, Fall 2019, Discussion 6 5

