1
2
3
4

o 0 9 N W

O 00 N N W R W N =

CS 61B Discussion 4: Inheritance Fall 2019

1 Creating Cats

Given the Animal class, fill in the definition of the Cat class so that it makes a "Meow!" noise
when greet () is called. Assume this noise is all caps for kittens, i.e. cats less than 2 years old.

public class Animal { class Cat extends Animal {
protected String name, noise;
protected int age;
public Animal (String name, int

age) {

this.name = name;

this.age = age;

this.noise = "Huh?"; }

}
public String makeNoise () {
if (age < 2) {
return
noise.toUpperCase () ;
}
return noise;
}
public String greet () {
return name + ": " +
makeNoise () ;

2 Impala-ments

a) We have two interfaces, BigBaller and ShotCaller. We also have L.i 1 Troy, a concrete
class, which should implement BigBaller and ShotCaller. Fill out the blank lines below so
that the code compiles correctly.

interface BigBaller {
void ball();
}
interface ShotCaller ({
void callShots () ;
}
public class LilTroy ' {
public void ball() {
System.out.println ("Wanna be a, baller");

}
public void callShots () {
System.out .println ("Shot caller");
}
public void rap() {
System.out.println("Say: Twenty inch blades on the Impala");

}

CS 61B, Fall 2019, Discussion 4: Inheritance 1



[ R I

AN R W N =

b) We have a BallCourt where ballers should be able to come and play. However, the below
code demonstrates an example of bad program design. Right now, only Li1Troy instances can
ball, since the play method can only take in an argument of type LilTroy .
public class BallCourt {
public void play(LilTroy 1ilTroy) {
1ilTroy.ball();

}
}

Fix the play method so that all the BigBallers can ball, rather than just Li1Troys.

public class BallCourt {
public void play ( ) |

}
}

c) We discover that Rappers have some common behaviors, leading to the following class.

class Rapper {
public abstract String getLine();
public final void rap() {
System.out.println("Say: " + getLine());
}
}

Will the above class compile? If not, why not, and how could we fix it?

d) Rewrite Li1Troy so that Li1Troy extends Rapper and displays exactly the same behavior
as in part a) without overriding the rap method (in fact, you cannot override final methods).

public class LilTroy extends implements P {

CS 61B, Fall 2019, Discussion 4: Inheritance 2



O 0 N N N R W N -

O 0 N N W R W N ==

3 Raining Cats & Dogs

In addition to Animal and Cat from Problem 1, we now have the Dog class! (Assume that the
Cat and Dog classes are both in the same file as the Animal class.)

class Dog extends Animal {
public Dog (String name, int age) {
super (name, age);
noise = "Woof!";
}
public void playFetch () {
System.out .println ("Fetch,

" + name + "!™");

}

Consider the following main function in the Animal class. Decide whether each line causes a
compile time error, a runtime error, or no error. If a line works correctly, draw a box-and-pointer
diagram and/or note what the line prints. It may be useful to refer to the Animal class back on
the first page.

public static void main (String[] args) {

Cat nyan = new Animal ("Nyan Cat", 5); (A)
Animal a = new Cat ("Olivia Benson", 3); (B)
a = new Dog ("Fido", 7); (C)
System.out.println(a.greet ()); (D)
a.playFetch(); (E)

Dog dl = a; (F
Dog d2 = (Dog) aj; (G
(H
(I

d2.playFetch () ;
(Dog) a.playFetch();

Animal imposter = new Cat ("Pedro", 12); (J)
Dog fakeDog = (Dog) imposter; (K)

Cat failImposter = new Cat ("Jimmy", 21); (L)
Dog failDog = (Dog) faillImposter; (M)

CS 61B, Fall 2019, Discussion 4: Inheritance 3



O 0 N N W kR W N ==

4 Bonus: An Exercise in Inheritance Misery

Cross out any lines that cause compile or runtime errors. What does the main program output
after removing those lines?

Moral of the story: fields are hidden if also defined in the subclass, and therefore you should avoid
doing that because it makes the code confusing.

class A {

+ x);}
+ this.x);}

+ x);}
+ super.x); }
super.m2 () ; }

super.x);}
super.super.x) ; }
v)i}

super.vy); }

+ + + +

int x = 5;
public void ml () {System.out.println("Aml-> "
public void m2 () {System.out.println("Am2-> "
public void update() {x = 99;}
}
class B extends A {
int x = 10;
public void m2 () {System.out.println("Bm2-> "
public void m3() {System.out.println("Bm3-> "
public void m4 () {System.out.print ("Bm4-> ");
}
class C extends B {
int y = x + 1;
public void m2 () {System.out.println("Cm2-> "
public void m3() {System.out.println("Cm3-> "
public void m4 () {System.out.println("Cm4-> "
public void m5() {System.out.println("Cm5-> "
}
class D {
public static void main (String[] args) {
A b0 = new B();
System.out.println (b0.x); (A)
b0.ml () ; (B)
b0.m2 () ; (C)
b0.m3(); (D)
B bl = new B();
bl.m3(); (E)
bl.m4(); (F)
A cO0 = new C();
cO0.ml(); (G)
A al = (A) cO0;
C c2 = (C) al;
c2.m4 () ; (H)
((C) c0).m3(); (1)
b0.update () ;
b0.ml(); (J)

CS 61B, Fall 2019, Discussion 4: Inheritance




